ГлавнаяКлубыBIOLOGБлог клуба - BIOLOG
+1 RSS-лента RSS-лента

Блог клуба - BIOLOG

Администратор блога: Мухачёва В.Н.
Экскурсия в Курагинское лесничество
Беречь и восстанавливать — экологическую экскурсию для школьников провели в Курагинском лесхозе. Курагинская телепрограмма «Вариант» от 16.09. 2017 г.
Смотреть
Л.р. №2. "Ферментативное расщепление пероксида водорода в растительных и животных клетках"
Лабораторная работа №2.
«Ферментативное расщепление пероксида водорода в растительных и животных клетках»
Цель работы:
1. Обнаружить действие фермента каталазы в растительных и животных тканях.
2. Сравнить ферментативную активность натуральных и поврежденных кипячением тканей.
Оборудование: 3% раствор перекиси водорода, пипетка, кусочки сырого и вареного мяса, сырого и вареного картофеля (или моркови), речной песок, чашки Петри.
Выполнение работы:
Теоретическая часть:
Одна из важнейших функций белков – каталитическая. Биологические катализаторы (ферменты) ускоряют все биохимические процессы в организме в млн. раз. Вещество, на которое воздействует фермент, называется субстратом. Структура молекулы фермента и субстрата должны точно соответствовать друг другу, этим объясняется специфичность действия ферментов. Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром.
Пероксид водорода Н2О2 – токсичное (ядовитое) вещество, которое образуется в клетках в результате окислительно - восстановительных процессов. Накоплению перекиси водорода препятствует фермент каталаза, которая образуется в каждой животной и растительной клетках. Под действием ферментов каталазы (или пероксидазы) пероксид водорода расщепляется до молекулярного кислорода и воды: 2Н2О2 = 2Н2О + О2↑. Молекулярный кислород выделяется в виде пузырьков. Наличие кислорода можно определить с помощью тлеющей лучинки, которая вспыхивает, если ее внести в пробирку с выделяющимися пузырьками.
Фермент функционирует с очень большой скоростью. Одна молекула фермента за 1 минуту расщепляет до 5 миллионов молекул пероксида водорода, защищая клетку от отравления. Иногда под влиянием различных факторов изменяется структура молекулы белка, и фермент теряет свою активность.


Практическая часть:
1. Приготовьте пять проб, пронумеруйте их.

1 – речной песок
2 – сырое мясо
3 – вареное мясо
4 – сырой картофель
5 – вареный картофель

2. Капнуть на каждую пробу 1–2 капли пероксида водорода (.Н2О2 )
3. Сравнить активность вареной и сырой растительной и животной тканей.
4. Практическую часть оформите в виде таблицы.
№ Исследуемый материал Наблюдения Объяснение результата
1 речной песок
2 сырое мясо
3 вареное мясо
4 сырой картофель
5 вареный картофель

Выводы по работе:
1. Что такое ферменты? Перечислите свойства ферментов.
2. Запишите уравнение расщепления перекиси водорода ферментом каталазой.
3. Какова роль фермента каталазы в клетках?
4. Чем обусловлено расщепление пероксида водорода в пробирках с кусочками сырого мяса, сырого картофеля.
5. Почему расщепление пероксида водорода в пробирках с кусочками вареного картофеля и мяса, а также в пробирке с песком не наблюдалось?
6. Какие уровни организации молекулы белка - фермента каталазы разрушаются при варке картофеля и мяса, что приводит к денатурации белка?
Задания
I: Доказать, что фермент каталаза имеет белковую природу.
II: Доказать, что при разрушении клеток ферменты сохраняют активность.
III: Почему у человека сбивают высокую температуру?
Организация практической и исследовательской деятельности школьников в курсе биологии
http://textarchive.ru/c-2360963-p4.html

Разведение инфузорий. Обычно инфузорий разводят в искусственных условиях. Для кормления мальков чаще всего используют туфельку P. caudatum, размеры которой обычно колеблются от 0,1 до 0,3 мм.
Для разведения туфелек лучше всего брать чистую культуру инфузорий. Если невозможно приобрести чистую культуру, то можно развести её самому.
Туфельки встречаются почти в каждом водоёме. Добывают их таким образом: воду из водоёмов наливают в три стеклянные банки; в одну из них кладут взятые со дна веточки, гниющие листья и прочие разлагающиеся растительные остатки, в другую собирают различные растения (ряска, элодея), в третью - ил, взятый со дна. Таким образом, в трёх банках будут созданы различные условия для жизни туфелек. После заполнении водой банки нужно просмотреть и удалить из них всех ракообразных, насекомых и их личинок, так как большинство этих животных поедают инфузорий.
Летом можно также взять пробу со дна высохшего водоема, а зимой — грунт из-подо льда. Банки ставят на светлое место (не под прямые лучи солнца) при комнатной температуре и закрывают стёклами.
После того, как банки простоят 2—3 дня, их слегка встряхивают и просматривают на свет. При этом можно определить, много ли туфелек в сосуде и нет ли там её врагов — водных насекомых и ракообразных.
Взяв каплю из банки на предметное стекло, просматривают её с помощью микроскопа или лупы. Туфелек легко отличить от других животных по их быстрому плавному движению. Тело у них веретенообразное, напоминающее по форме подошву туфли.
Под малым увеличением микроскопа хорошо видно, как при движении вперёд они вращаются вокруг своей оси.
Инфузории часто массами скапливаются у кусочков органи¬ческих остатков листочка или у поверхностной бактериальной плёнки, где они питаются бактериями. При неравномерном' осве¬щении сосуда подавляющее большинство туфелек концентрируется у более освещенной стенки. В закрытом сосуде и вообще при недостатке кислорода в воде они держатся у поверхности.
Если размножение происходит недостаточно быстро, можно добавить в воду 1—2 капли кипячёного молока, но обычно через 2—3 дня инфузорий бывает вполне достаточно. В таком случае берут каплю воды у стенки, расположенной со стороны света, и тщательно просматривают её под микроскопом при малом увеличении.
Если в пробе не обнаруживается никаких животных, кроме туфелек, то культура пригодна для массового размножения. В противном случае большая капля воды с максимальной кон¬центрацией инфузорий располагается на чистом стекле, а рядом с ней со стороны света располагается капля свежей отстоявшейся воды. Обе капли соединяются с помощью отточенной спички вод¬ным мостиком; туфельки устремляются в сторону свежей воды и света с большой скоростью, чем все остальные микроорганизмы. Размножаются туфельки очень быстро, поэтому в начале для разведения нет необходимости в их больших количествах.
При разведении туфелек можно употреблять различные сосу¬ды, наиболее удобны стеклянные банки. Наилучшей является вода с температурой около 26°С, достаточно хорошие результаты получаются при комнатной температуре, но сохранить культуру можно при гораздо более низкой температуре (4-10° С и даже ниже). Длительное содержание культуры при оптимальной тем¬пературе приводит к их бурному размножению, а затем к быст¬рому исчезновению.
Лучше всего при разведении инфузорий использовать трех¬литровые банки. В одной из них отстаивается вода, доливаемая взамен убывающей, а в двух поддерживается культура инфузории. Из них по очереди берутся туфельки из мест их наибольшей концентрации с помощью резиновой груши со стеклянных наконечником.
Туфелек можно культивировать на банановой кожуре. Кожуру спелых неповрежденных бананов высушивают, а затем хранят в сухом помещении; сушеную кожуру промывают и в не большом количестве (1—3 см3) помещают в культуру.
Наиболее простым является разведение туфелек на снятом сыром или кипяченом молоке. Молоко нужно добавлять по 1-3 капли в несколько дней (лучше меньше, чем больше). При образовании осадка на дне или мути на стенках сосуда банку следует вымыть, налить отстоянную воду и поместить в нее культуру туфелек. Необходимо всегда держать в запасе культуру тyфелек, которой можно заменить погибшую, т. к. культура на молоке очень нестойкая (особенно легко погибает при его избытке). В молочном растворе туфельки питаются размножающимися там в огромном (количестве молочнокислыми бактериями.
Можно разводить туфелек на сенном настое. Для этого в чистую кастрюлю или колбу кладут 10г лугового сена ни литр воды и кипятят в течение 15—20 минут. За это время погибают все простейшие и их цисты, но сохраняются споры 6актерий. После кипячения остывший настой фильтруют через воронку с ватой, разливают в сосуды и закрывают ватно-марлевыми тампонами. Через 2—3 дня из спор развиваются сенные палочки, служащие пищей для инфузорий. В таком виде в настои можно по мере необходимости добавлять культуру. Сохраняется он в течение месяца.
Туфелек можно разводить на сушеных листьях салата, помещенных в мешочек из марли, и на пекарских дрожжах.
Туфельки служат естественными санитарами пресных пол, уничтожающими бактерий.
Для получения чистой культуры необходимо освободи п. культуру от бактерий и взвешенных в воде органических частик Богатую культуру инфузорий помещают в цилиндр, сверху ил жидкость кладут вату и затем осторожно, на вату доливают свежую воду. Через полчаса большинство туфелек перемещают в свежую воду и вместе с нею их переносят грушей в сосуд отстоявшейся водой.
Генетические (наследственные) заболевания
http://www.studfiles.ru/preview/5283779/page:4/

http://fb.ru/article/285619/nasledstvennyie-zabolevaniya-cheloveka-spisok-naibolee-rasprostranennyie-i-opasnyie-zabolevaniya
Основные типы наследования признаков.
1. Генетика как наука, ее предмет, задачи и методы. Основные этапы развития.
Генетика- дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами.
Предмет генетики – наследственность и изменчивость организмов.
Задачи генетикивытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования:
1) механизмов хранения и передачи генетической информации от родительских форм к дочерним;
2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды;
3) типов, причин и механизмов изменчивости всех живых существ;
4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.
Генетика является также основой для решения ряда важнейших практических задач. К ним относятся:
1) выбор наиболее эффективных типов гибридизации и способов отбора;
2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов;
3) искусственное получение наследственно измененных форм живых организмов;
4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных;
5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.
Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек.
2. Основные понятия генетики
Наследственность— это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития.
Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма.
Изменчивость— способность организмов в процессе онтогенеза приобретать новые признаки и терять старые.
Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются и друг от друга, и от своих родителей.
Ген– это участок молекулы ДНК, отвечающий за определенный признак.
Генотип— это совокупность всех генов организма, являющихся его наследственной основой.
Фенотип— совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.
Аллельные гены- различные формы того же гена, занимающие одно и то же место (локус) гомологичных хромосом и определяющие альтернативные состояния одного и того же признака.
Доминантность — форма взаимоотношений междуаллелямиодногогена, при которой один из них подавляет проявление другого.
Рецессивность– отсутствие (непроявление) у гетерозиготного организма одного из пары противоположных (альтернативных) признаков.
Гомозиготность– состояние диплоидного организма, при котором в гомологичных хромосомах находятся идентичные аллели генов.
Гетерозиготность– состояние диплоидного организма, при котором в гомологичных хромосомах находятся разные аллели генов.
Гемизиготность— состояние гена, при котором в гомологичной хромосоме полностью отсутствует его аллель.
3. Основные типы наследования признаков.
I. Моногенное (такой тип наследования, когда наследственный признак контролируется одним геном)
1. Аутосомное
1. Доминантное (прослеживается в каждом поколении; у больных родителей больной ребенок; болеют и мужчины и женщины; вероятность наследования – 50-100%)
2. Рецессивное (не в каждом поколении; проявляется в потомстве у здоровых родителей; встречается и у мужчин и у женщин; вероятность наследования – 25-50-100%)
2. Геносомное
1. Х-сцепленное доминантное (сходен с аутосомным доминантным, но мужчины передают признак только дочерям)
2. Х-сцепленное рецессивное (не в каждом поколении; болеют преимущественно мужчины; у здоровых родителей с вероятностью 25% - больные сыновья; больные девочки, если отец болен, а мать носительница)
3. Y-сцепленное (голандрическое) (в каждом поколении; болеют мужчины; у больного отца все сыновья больные; вероятность наследования – 100% у всех мужчин)
II. Полигенное
4. Моногибридное скрещивание. Первый и второй законы Менделя, их цитологические основы.
Моногибриднымназывается скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.
Первый закон Менделя(Закон единообразия гибридов первого поколения):
«При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу»
Второй закон Менделя (Закон расщепления признаков):
«При скрещивании гибридов первого поколения, анализируемых по одной паре альтернативных признаков, наблюдается расщепление по фенотипу 3:1, по генотипу 1:2:1»
В опытах Менделя первое поколение гибридов получено от скрещивания чистолинейных (гомозиготных) родительских растений гороха с альтернативными признаками (АА х аа). Они образуют гаплоидные гаметы А и а. Следовательно, после оплодотворения гибридное растение первого поколения будет гетерозиготным (Аа) с проявлением только доминантного (желтая окраска семени) признака, т. е. будет единообразным, одинаковым по фенотипу.
Второе поколение гибридов получено при скрещивании между собой гибридных растений первого поколения (Аа), каждое из которых образует по два типа гамет: А и а. Равновероятное сочетание гамет при оплодотворении особей первого поколения дает расщепление у гибридов второго поколения в соотношении: по фенотипу 3 части растений с доминантным признаком (желтозерные) к 1 части растений с рецессивным признаком (зеленозерным), по генотипу — 1 АА : 2 Аа : 1 аа.
5. Ди- и полигибридное скрещивание. Закон независимого комбинирования неаллельных генов.
Скрещивания, в которых родительские формы различаются по одной паре признаков, называют моногибридными, по двум — дигибридными, а по многим парам признаков — полигибридными. Третий закон Менделя(Закон независимого комбинирования признаков):
«При скрещивании гомозиготных организмов, анализируемых по двум и более альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов и определяемых ими признаков во всех возможных сочетаниях»Схематически скрещивание F1 выглядит так:
AB 1/4 Ab 1/4 aB 1/4 ab 1/4
AB 1/4 AABB 1/16 AABb 1/16 AaBB 1/16 AaBb 1/16
Ab 1/4 AABb 1/16 AAbb 1/16 AaBb 1/16 Aabb 1/16
aB 1/4 AaBB 1/16 AaBb 1/16 aaBB 1/16 aaBb 1/16
ab 1/4 AaBb 1/16 Aabb 1/16 aaBb 1/16 aabb 1/16
Из схемы видно, что вероятность образования гамет с различными комбинациями аллелей двух генов одинакова и составляет 1/4. Если подсчитать расщепление по признаку, обусловленному геном A и по признаку, обусловленному геном B отдельно, то оно составит 3:1 и 3:1, т.е. как в случае моногибридного скрещивания. В пределах каждого генотипического класса: AA, Aa, aa частота встречаемости генов BB, Bb и bb одинакова – 1:2:1.
6. Условия менделирования признаков. Статистический характер менделеевских закономерностей. Менделирующие признаки человека.
Менделирование— распределение генов в потомстве в соответствии с законами Менделя.
Условия менделирования:
- в наборе хромосом есть парные гомологичные хромосомы
- расхождение гомологичных хромосом в анафазу мейоза I идет независимо
- при оплодотворении сочетание гамет происходит случайно
- разные гены находятся в разных хромосомах
- 1 ген контролирует 1 признак (моногенность)
- признаки качественные, не количественные
Законы Менделя носят статистический характер – выполняются при большом количестве особей, кроме того для их выполнения должны быть соблюдены следующие условия:
1. гены разных аллельных пар должны находиться в разных парах гомологичных хромосом
2. между генами не должно быть сцепления или взаимодействия, кроме полного доминирования
3. Образование гамет разного типа должно быть равновероятным
4. выживаемость организмов с разными генотипами должна быть равновероятной
5. пенетрантность (частота проявления признака) должна быть 100%, должно отсутствовать множественное действие генов и мутации
Менделирующими признаками называются те, наследование которых про исходит по закономерностям, установленным Г. Менделем. Менделирующие признаки определяются одним геном моногенно (от греч.monos-один) то есть когда проявление признака определяется взаимодействием аллельных генов, один из которых доминирует (подавляет) другой. Менделевские законы справедливы для аутосомных генов с полной пенетрантностью (от лат.penetrans-проникающий, достигающий) и постоянной экспрессивностью (степенью выраженности признака). Если гены локализованы в половых хромосомах (за исключением гомологичного участка в Х- и У-хромосомах), или в одной хромосоме сцеплено, или в ДНК органоидов, то результаты скрещивания не будут следовать законам Менделя. Общие законы наследственности одинаковы для всех эукариот. У человека также имеются менделирующие признаки, и для него характерны все типы их наследования: аутосомно-доминантный, аутосомно-рецессивный, сцепленный с половыми хромосомами (с гомологичным участком Х- и У-хромосом). Типы наследования менделирующих признаков: I. Аутосомно-доминантный тип наследования. По аутосомно-доминантному типу наследуются некоторые нормальные и патологические признаки: 1) белый локон над лбом; 2) волосы жесткие, прямые (ежик); 3) шерстистые волосы - короткие, легко секущиеся, курчавые, пышные; 4) кожа толстая; 5) способность свертывать язык в трубочку; 6) габсбургская губа - нижняя челюсть узкая, выступающая вперед, нижняя губа отвислая и полуоткрытый рот; 7) полидактилия (от греч.polus – многочисленный, daktylos- палец) – многопалость, когда имеется от шести и более пальцев; 8) синдактилия (от греч. syn - вместе)-сращение мягких или костных тканей фаланг двух или более пальцев; 9) брахидактилия (короткопалость) – недоразвитие дистальных фаланг пальцев; 10) арахнодактилия (от греч. агаhna – паук ) – сильно удлиненные «паучьи» пальцы II. Аутосомно-рецессивный тип наследования. По аутосомно-рецессивному типу наследуются следующие признаки: 1)волосы мягкие, прямые; 2)кожа тонкая; 3)группа крови Rh-; 4)неощущение горечи вкуса фенилкарбамида; 5)неумение складывать язык в трубочку; 6)фенилкетонурия – блокируется превращение фенилаланина в тирозин, который превращается в фенилпировиноградную кислоту, являющуюся нейротропным ядом (признаки – судорожные синдромы, отставание в психическом развитии, импульсивность, возбудимость, агрессия); 7)галактоземия - накопление в крови галактозы, которая тормозит всасывание глюкозы и оказывает токсическое действие на функцию печени, мозга, хрусталика глаза; 8)альбинизм.
7. Сущность анализирующего скрещивания.
Анализирующее скрещивание — скрещивание, проводящееся для определения генотипа организма. Для этого подопытный организм скрещивают с организмом, являющимся рецессивной гомозиготой по изучаемому признаку.
Допустим, надо выяснить генотип растения гороха, имеющего желтые семена. Возможны два варианта генотипа по¬допытного растения: он может являться либо гетерозиготой (Аа), либо доминантной гомозиготой (АА). Для установления его генотипа проведем анализирующее скрещивание с рецессивной гомозиготой (аа) - растением с зелеными семенами. Таким образом, если в результате анализирующего скрещивания в F1, наблю¬дается расщепление в соотношении 1:1, то подопытный организм был гетерози¬готен; если расщепления не наблюдает¬ся и все организмы в F1 проявляют до¬минантные признаки, то подопытный организм был гомозиготен.
8. Множественный аллелизм. Наследование групп крови.
Множественный аллелизм— один из видов взаимодействия аллельных генов, при котором ген может быть представлен не двумя аллелями (как в случаях полного или неполного доминиро¬вания), а гораздо большим их числом; при этом члены одной серии аллелей могут находиться в различных доминантно-ре¬цессивных отношениях друг с другом.
Имеются определенные закономерности множественного аллелизма: — каждый ген может иметь большое число аллелей; — любой аллель может возникнуть в результате прямой и обратной мутации любого члена серии множественных аллелей или от аллеля дикого типа; — в диплоидном организме могут одновременно находиться два любых аллеля из серии множественных аллелей; — аллели находятся в сложных доминантно-рецессивных отношениях между собой: один и тот же аллель может быть доминантным по отношению к одному аллелю и рецессивным по отношению к другому, а между иными аллелями доминирование может отсутствовать, и наблюдается кодоминирование и др.; — члены серии множественных аллелей наследуются так же, как и пара аллелей, т. е. наследование подчиняется менделевским закономерностям (кроме кодоминирования); — разные сочетания аллелей в генотипе обуславливают различные фенотипические проявления одного и того же признака; — серии аллелей увеличивают комбинатовную изменчивость.
Примером множественного аллелизма у человека является наличие трех аллелей гена, определяющего наследование групп крови системы АВО. • система определяется тремя аллелями одного гена I (IA, IB,I°); ген I расположен в 9-й хромосоме • из всей серии аллелей одновременно в генотипе диплоидного организма находятся два аллеля (I°I°, IAIA, IAI°, IBIBи др.); • аллели IA, IBдоминантны по отношению к аллелю I° — полное доминирование, между собой аллели IAи IB— кодоминантны; • доминантный аллель гена может проявлять свое действие в гомо- (IAIA, IBIB) и гетерозиготном организмах (IAI°, IBI°), а рецессивный аллель гена — только в гомозиготном организме (I°I°); • различные сочетания аллелей в генотипе дают разные фенотипы: 4 группы крови I (0), II (А), III (В), IV (АВ), которые различаются между собой антигенными свойствами эритроцитов. Антигены (агглютиногены) находятся на поверхности эритроцитов (гликокаликс);
9. Виды взаимодействия аллельных генов.
1. Полное доминирование
2. Неполное доминирование – ослабление действия доминантного гена в присутствии рецессивного (при этом у гетерозигот наблюдается промежуточный характер признака)
3. Сверхдоминирование – доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном
4. ко-доминирование – гены одной аллельной пары равнозначны и если оба присутствуют в генотипе, то оба проявляют свое действие (IVгруппа крови)
5. межаллельная комплементация – нормальный признак формируется в результате сочетания двух мутантных генов в гетерозиготе. Причина в том, что продукты рецессивных генов, взаимодействуя, и дополняя друг друга, формируют признак идентичный деятельности доминантного аллеля.
6. Аллельное исключение – вид взаимодействия, при котором инактивируется один из аллелей гена, что приводит к проявлению в клетках разных аллелей
10. Характеристика основных типов взаимодействия неаллельных генов.
1. Комплементарность– вид взаимодействия, при котором новый признак возникает при взаимодействии двух доминантных неаллельных генов, находящихся в одном генотипе, тогда как, присутствуя в генотипе поотдельности, они влияют на признак по-другому.
Расщепления в F2
9:6:1
9:3:4
9:3:3:1
9:7
2. Эпистаз– подавление аллелей одного гена действием аллелей других генов.
Подавляющий ген называется эпистатичным, подавляемый — гипостатичным.
Эпистатическое взаимодействие неаллельных генов может быть доминантным(13:3, 12:3:1) и рецессивным (9:3:4).
3. Полимерия– несколько доминантных неаллельнюх генов определяют один и тот же признак. Такие гены обозначают одинаковыми буквами с разными индексами.
Полимерия бывает:
- некумулятивной – влияние оказывает не количество доминантных генов в генотипе, а присутствие хотя бы одного (15:1)
- кумулятивной – количество доминантных генов влияет на степень выраженности признаков (1:4:6:4:1)

http://www.studfiles.ru/preview/4668963/
Тексты биологического содержания. (Подготовка к ОГЭ)
http://bioishim.ru/gia/Work_with_the_text_of_biological_contents.pdf
Решение задач на ЕГЭ по жизненному циклу растений
Решение задач ЕГЭ по жизненному циклу растений
Понятие о жизненном цикле растений
В жизненном цикле растений происходит чередование бесполого и полового размножения и связанное с этим чередований поколений.
Гаплоидный (n) растительный организм, образующий гаметы, называется гаметофитом (n). Он представляет половое поколение. Гаметы формируются в половых органах путём митоза: сперматозоиды (n) - в антеридиях (n), яйцеклетки (n) – в архегониях (n) .
Гаметофиты бывают обоеполые (на нём развиваются антеридии и архегонии) и раздельнополые (антеридии и архегонии развиваются на разных растениях).
После слияния гамет (n) образуется зигота с диплоидным набором хромосом (2n), а из неё развивается путём митоза бесполое поколение – спорофит (2n). В специальных органах - спорангиях (2n) спорофита (2n) после мейоза образуются гаплоидные споры (n), при делении которых митозом развиваются новые гаметофиты (n).
Жизненный цикл зелёных водорослей
В жизненном цикле зелёных водорослей преобладает гаметофит (n), то есть клетки их слоевища гаплоидны (n). При наступлении неблагоприятных условий (похолодание, пересыхание водоёма) происходит половое размножение – образуются гаметы (n), которые попарно сливаются в зиготу (2n). Зигота (2n), покрытая оболочкой зимует, после чего при наступлении благоприятных условий делится мейозом с образованием гаплоидных спор (n), из которых развиваются новые особи (n).
Задача 1. Какой набор хромосом характерен для клеток слоевища улотрикса и для его гамет? Объясните, из каких исходных клеток и в результате, какого деления они образуются.
Ответ:
1. В клетках слоевища гаплоидный набор хромосом (n), они развиваются из споры с гаплоидным набором хромосом (n) путём митоза.
2. В гаметах гаплоидный набор хромосом (n), они образуются из клеток слоевища с гаплоидным набором хромосом (n) путём митоза.
Задача 2. Какой набор хромосом характерен для зиготы и для спор зелёных водорослей? Объясните, из каких исходных клеток и как они образуются.
Ответ:
1. В зиготе диплоидный набор хромосом (2n), она образуется при слиянии гамет с гаплоидным набором хромосом (n).
2. В спорах гаплоидный набор хромосом (n), они образуются из зиготы с диплоидным набором хромосом (2n) путём мейоза.

Жизненный цикл мхов (кукушкин лён)

У мхов в цикле развития преобладает половое поколение (n). Листостебельные растения мхов – раздельнополые гаметофиты (n). На мужских растениях (n) формируются антеридии (n) со сперматозоидами (n), на женских (n) – архегонии (n) с яйцеклетками (n). С помощью воды (во время дождя) сперматозоиды (n) попадают к яйцеклеткам (n), происходит оплодотворение, возникает зигота (2n). Зигота находится на женском гаметофите (n), она делится митозом и развивается спорофит (2n) – коробочка на ножке. Таким образом, спорофит (2n) у мхов живёт за счёт женского гаметофита (n).
В коробочке спорофита (2n) путём мейоза образуются споры (n). Мхи – разноспоровые растения, различают микроспоры – мужские и макроспоры – женские. Из спор (n) путём митоза развиваются сначала предростки, а затем взрослые растения (n).
Задача 3. Какой хромосомный набор характерен для гамет и спор кукушкина льна? Объясните, из каких исходных клеток и в результате, какого деления они образуются.
Ответ:
1. В гаметах мха кукушкина льна гаплоидный набор хромосом (n), они образуются из антеридиев (n) и архегониев (n) мужского и женского гаметофитов с гаплоидным набором хромосом (n) путём митоза.
2. В спорах гаплоидный набор хромосом (n), они образуются из клеток спорофита - коробочки на ножке с диплоидным набором хромосом (2n) путём мейоза.
Задача 4. Какой хромосомный набор характерен для клеток листьев и коробочки на ножке кукушкина льна? Объясните, из каких исходных клеток и в результате, какого деления они образуются.
Ответ:
1. В клетках листьев кукушкина льна гаплоидный набор хромосом (n), они, как и всё растение, развиваются из споры с гаплоидным набором хромосом (n) путём митоза.
2. В клетках коробочки на ножке диплоидный набор хромосом (2n), она развивается из зиготы с диплоидным набором хромосом (2n) путём митоза.
Лекция
Жизненный цикл папоротников
У папоротников (также хвощей, плаунов) в жизненном цикле преобладает спорофит (2n). На нижней стороне листьев растения (2n) развиваются спорангии (2n), в которых путём мейоза образуются споры (n). Из споры (n), попавшей во влажную почву, прорастает заросток (n) – обоеполый гаметофит. На его нижней стороне развиваются антеридии (n) и архегонии (n), а в них путём митоза образуются сперматозоиды (n) и яйцеклетки (n). С капельками росы или дождевой воды сперматозоиды (n) попадают к яйцеклеткам (n), образуется зигота (2n), а из нее – зародыш нового растения (2n). (Демонстрация слайдов).
Схема 3. Жизненный цикл папоротников
Практикум
Задача 5. Какой хромосомный набор характерен для листьев (вай) и заростка папоротника? Объясните, из каких исходных клеток и в результате, какого деления образуются эти клетки.
Ответ:
1. В клетках листьев папоротника диплоидный набор хромосом (2n), так они, как и всё растение, развиваются из зиготы с диплоидным набором хромосом (2n) путём митоза.
2. В клетках заростка гаплоидный набор хромосом (n), так как заросток образуется из гаплоидной споры (n) путём митоза.
Лекция
Жизненный цикл голосеменных растений (сосна)
Листостебельное растение голосеменных растений – спорофит (2n), на котором развиваются женские и мужские шишки (2n).
На чешуйках женских шишек расположены семязачатки – мегаспорангии (2n), в которых путём мейоза образуются 4 мегаспоры (n), 3 из них погибают, а из оставшейся – развивается женский гаметофит – эндосперм (n) с двумя архегониями (n). В архегониях образуются 2 яйцеклетки (n), одна погибает.
На чешуйках мужских шишек располагаются пыльцевые мешки – микроспорангии (2n), в которых путём мейоза образуются микроспоры (n), из них развиваются мужские гаметофиты – пыльцевые зёрна (n), состоящие из двух гаплоидных клеток (вегетативной и генеративной) и двух воздушных камер.
Пыльцевые зёрна (n) (пыльца) ветром переносятся на женские шишки, где митозом из генеративной клетки (n) образуются 2 спермия (n), а из вегетативной (n) – пыльцевая трубка (n), врастающая внутрь семязачатка и доставляющая спермии (n) к яйцеклетке (n). Один спермий погибает, а второй участвует в оплодотворении, образуется зигота (2n), из которой митозом формируется зародыш растения (2n).
В результате из семязачатка формируется семя, покрытое кожурой и содержащее внутри зародыш (2n) и эндосперм (n).
Схема 4. Жизненный цикл голосеменных растений (сосна)
Практикум
Задача 6. Какой хромосомный набор характерен для клеток пыльцевого зерна и спермиев сосны? Объясните, из каких исходных клеток и в результате, какого деления образуются эти клетки.
Ответ:
1. В клетках пыльцевого зерна гаплоидный набор хромосом (n), так как оно образуется из гаплоидной микроспоры (n) путём митоза.
2. В спермиях гаплоидный набор хромосом (n), так как они образуются из генеративной клетки пыльцевого зерна с гаплоидным набором хромосом (n) путём митоза.
Задача 7. Какой хромосомный набор характерен для мегаспоры и клеток эндосперма сосны? Объясните, из каких исходных клеток и в результате, какого деления образуются эти клетки.
Ответ:
1. В мегаспорах гаплоидный набор хромосом (n), так как они образуются из клеток семязачатка (мегаспорангия) с диплоидным набором хромосом (2n) путём мейоза.
2. В клетках эндосперма гаплоидный набор хромосом (n), так как эндосперм формируется из гаплоидных мегаспор (n) путём митоза.
Жизненный цикл покрытосеменных растений
Покрытосеменные растения являются спорофитами (2n). Органом их полового размножения является цветок.
В завязи пестиков цветка находятся семязачатки – мегаспорангии (2n), где происходит мейоз и образуются 4 мегаспоры (n), 3 из них погибают, а из оставшейся – развивается женский гаметофит – зародышевый мешок из 8 клеток (n), одна из них – яйцеклетка (n), а две сливаются в одну – крупную (центральную) клетку с диплоидным набором хромосом (2n).
В микроспорангиях (2n) пыльников тычинок путём мейоза образуются микроспоры (n), из которых развиваются мужские гаметофиты – пыльцевые зёрна (n), состоящие из двух гаплоидных клеток (вегетативной и генеративной).
После опыления из генеративной клетки (n) образуются 2 спермия (n), а из вегетативной (n) – пыльцевая трубка (n), врастающая внутрь семязачатка и доставляющая спермии (n) к яйцеклетке (n) и центральной клетке (2n) . Один спермий (n) сливается с яйцеклеткой (n) и образуется зигота (2n), из которой митозом формируется зародыш растения (2n). Второй спермий (n) сливается центральной клеткой (2n) с образованием триплоидного эндосперма (3n). Такое оплодотворение у покрытосеменных растений называется двойным.
В результате из семязачатка формируется семя, покрытое кожурой и содержащее внутри зародыш (2n) и эндосперм (3n).
Схема 5. Жизненный цикл покрытосеменных растений
Задача 8. Какой хромосомный набор характерен для микроспоры, которая образуется в пыльнике, и клеток эндосперма семени цветкового растения? Объясните, из каких исходных клеток и как они образуются.
Ответ:
1. В микроспорах гаплоидный набор хромосом (n), так как они образуются из клеток микроспорангиев с диплоидным набором хромосом (2n) путём мейоза.
2. В клетках эндосперма триплоидный набор хромосом (3n), так как эндосперм образуется при слиянии гаплоидного спермия (n) с диплоидной центральной клеткой (2n).
Общие выводы
1. В процессе эволюции растений происходила постепенная редукция гаметофита и развитие спорофита.
2. В гаметах растений гаплоидный набор (n) хромосом, они образуются путём митоза.
3. В спорах растений гаплоидный набор (n) хромосом, они образуются путём мейоза.
КИМ ЕГЭ 2017. БИОЛОГИЯ (досрочный период)
http://fipi.ru/sites/default/files/document/2017/bi_101.pdf
Жизненные циклы высших растений
http://bono-esse.ru/blizzard/A/PDF/zhizn_cikly_vyssh_rast.pdf
Типы наследования признаков у человека
Типы наследования признаков у человека - Читайте подробнее на FB.ru: http://fb.ru/article/172571/tip-nasledovaniya-autosomno-dominantnyiy-tipyi-nasledovaniya-priznakov-u-cheloveka
1. Аутосомно-доминантный.
2. Аутосомно-рецессивный.
3. Сцепленное с Х-хромосомой доминантное наследование
4. Х-сцепленное рецессивное
Каждый тип наследования имеет свои особенности и признаки.

Аутосомно-доминантное наследование
Тип наследования аутосомно-доминантный - это наследование преобладающих признаков, которые располагаются в аутосомах. Фенотипические проявления их могут сильно отличаться. У некоторых признак может быть едва заметным, а бывает и слишком интенсивное его проявление.
Признаки:
1. Больной признак проявляется в каждом поколении.
2. Количество больных и здоровых примерно одинаковое, их соотношение 1:1.
3. Если дети у больных родителей рождаются здоровыми, то и их дети будут здоровы.
4. Болезнь одинаково затрагивает как мальчиков, так и девочек.
5. Заболевание одинаково передается от мужчин и женщин.
6. Чем сильнее влияние на репродуктивные функции, тем больше вероятность появления различных мутаций.
7. Если оба родителя больны, то ребенок, рождаясь гомозиготой по этому признаку, болеет более тяжело по сравнению с гетерозиготой.
Все эти признаки реализуются только при условии полного доминирования. При этом только присутствия одного доминантного гена будет достаточно для проявления признака
Большая часть лиц, которые являются носителями аутосомно-доминантного патологического признака, являются по нему гетерозиготами. Многочисленные исследования подтверждают, что гомозиготы по доминантной аномалии имеют более серьезные и тяжелые проявления по сравнению с гетерозиготами. Этот тип наследования у человека характерен не только для патологических признаков, но и некоторые вполне нормальные так наследуются.
Среди нормальных признаков с таким типом наследования можно отметить:
1. Вьющиеся волосы.
2. Темные глаза.
3. Прямой нос.
4. Горбинка на переносице.
5. Облысение в раннем возрасте у мужчин.
6. Праворукость.
7. Способность сворачивать язык трубочкой.
8. Ямочка на подбородке.
Среди аномалий, которые имеют тип наследования аутосомно-доминантный, наиболее известны следующие:
1. Многопалость, может быть как на руках, так и на ногах.
2. Сращение тканей фаланг пальцев.
3. Брахидактилия.
4. Синдром Марфана.
5. Близорукость.
Если доминирование неполное, то проявление признака можно наблюдать не в каждом поколении.
Аутосомно-рецессивный тип наследования
Проявиться признак при этом типе наследования может только в случае образования гомозиготы по этой патологии. Такие болезни протекают более тяжело, потому что обе аллели одного гена имеют дефект.
Вероятность проявления таких признаков повышается при близкородственных браках, поэтому во многих странах союз между родственниками заключать запрещено.
К основным критериям такого наследования можно отнести следующие:
1. Если оба родителя здоровы, но являются носителями патологического гена, то ребенок будет болен.
2. Пол будущего ребенка не играет при наследовании никакой роли.
3. У одной семейной пары риск рождения второго ребенка с такой же патологией составляет 25%
4. Если посмотреть родословную, то прослеживается горизонтальное распределение больных.
5. Если оба родителя больны, то все дети будут рождаться с такой же патологией.
6. Если один родитель болен, а второй является носителем такого гена, то вероятность рождения больного ребенка составляет 50%
По такому типу наследуются очень многие заболевания, касающиеся обмена веществ
Тип наследования, сцепленный с Х-хромосомой

Это наследование может быть как доминантным, так и рецессивным.

К признакам доминантного наследования можно отнести следующие:
1. Могут поражаться оба пола, но женщины в 2 раза чаще.
2. Если болен отец, то он может передать больной ген только своим дочерям, потому что сыновья от него получают У-хромосому.
3. Больная мать с одинаковой вероятностью награждает таким заболеванием детей обоего пола.
4. Тяжелее протекает заболевание у мужчин, потому что у них отсутствует вторая Х-хромосома.

Если в Х-хромосоме находится рецессивный ген, то наследование имеет следующие признаки:
1. Больной ребенок может родиться и у фенотипически здоровых родителей.
2. Чаще всего болеют мужчины, а женщины являются носительницами больного гена.
3. Если болен отец, то за здоровье сыновей можно не переживать, от него они не могут получить дефектный ген.
4. Вероятность рождения больного ребенка у женщины-носительницы составляет 25%, если речь идет о мальчиках, то она повышается до 50%.
Так наследуются такие заболевания, как гемофилия, дальтонизм, мышечная дистрофия, синдром Калльмана и некоторые другие.